Topics in Convex Optimization: Interior-point Methods, Conic Duality and Approximations
نویسندگان
چکیده
منابع مشابه
Interior Point and Semidefinite Approaches in Combinatorial Optimization
Conic programming, especially semidefinite programming (SDP), has been regarded as linear programming for the 21st century. This tremendous excitement was spurred in part by a variety of applications of SDP in integer programming (IP) and combinatorial optimization, and the development of efficient primal-dual interior-point methods (IPMs) and various first order approaches for the solution of ...
متن کاملAdvances in convex optimization: conic programming
During the last two decades, major developments in convex optimization were focusing on conic programming, primarily, on linear, conic quadratic and semidefinite optimization. Conic programming allows to reveal rich structure which usually is possessed by a convex program and to exploit this structure in order to process the program efficiently. In the paper, we overview the major components of...
متن کاملThe Many Faces of Degeneracy in Conic Optimization
Slater’s condition – existence of a “strictly feasible solution” – is a common assumption in conic optimization. Without strict feasibility, first-order optimality conditions may be meaningless, the dual problem may yield little information about the primal, and small changes in the data may render the problem infeasible. Hence, failure of strict feasibility can negatively impact off-the-shelf ...
متن کاملFull Nesterov-Todd Step Primal-Dual Interior-Point Methods for Second-Order Cone Optimization∗
After a brief introduction to Jordan algebras, we present a primal-dual interior-point algorithm for second-order conic optimization that uses full Nesterov-Todd-steps; no line searches are required. The number of iterations of the algorithm is O( √ N log(N/ε), where N stands for the number of second-order cones in the problem formulation and ε is the desired accuracy. The bound coincides with ...
متن کاملOn implementing a primal-dual interior-point method for conic quadratic optimization
Conic quadratic optimization is the problem of minimizing a linear function subject to the intersection of an affine set and the product of quadratic cones. The problem is a convex optimization problem and has numerous applications in engineering, economics, and other areas of science. Indeed, linear and convex quadratic optimization is a special case. Conic quadratic optimization problems can ...
متن کامل